Mitochondrial Uncoupling Attenuates Age-Dependent Neurodegeneration in C. elegans
نویسندگان
چکیده
The uncoupling protein 4 (ucp-4) gene is involved in age-dependent neurodegeneration in C. elegans. Therefore, we aimed to investigate the mechanism underlying the association between mitochondrial uncoupling and neurodegeneration by examining the effects of uncoupling agents and ucp-4 overexpression in C. elegans. Treatment with either DNP or CCCP improved neuronal defects in wild type during aging. Uncoupling agents also restored neuronal phenotypes of ucp-4 mutants to those exhibited by wild type, while ucp-4 overexpression attenuated the severity of age-dependent neurodegeneration. Neuronal improvements were further associated with reductions in mitochondrial membrane potentials. However, these age-dependent neuroprotective effects were limited in mitophagy-deficient mutant, pink-1, background. These results suggest that membrane uncoupling can attenuate age-dependent neurodegeneration by stimulating mitophagy.
منابع مشابه
Uncoupling Protein, UCP-4 May Be Involved in Neuronal Defects During Aging and Resistance to Pathogens in Caenorhabditis elegans
Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins that function to dissipate proton motive force and mitochondrial membrane potential. One UCP has been identified in Caenorhabditis elegans (C. elegans), namely UCP-4. In this study, we examined its expression and localization using a GFP marker in C. elegans. ucp-4 was expressed throughout the body from early embryo to aged ad...
متن کاملExposure to Mitochondrial Genotoxins and Dopaminergic Neurodegeneration in Caenorhabditis elegans
Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondria...
متن کاملThe Effect of Uncoupling Protein Polymorphisms on Growth, Breeding Value of Growth and Reproductive Traits in the Fars Indigenous Chicken
The avianuncoupling protein (avUCP) is a member of the mitochondrial transporter superfamily that uncouples proton entry in the mitochondrial matrix from ATP synthesis. The polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used to estimate the allele and genotype frequencies of the UCP/HhaI polymorphisms and to determine associations between these polymorp...
متن کاملThe Mitochondria-Regulated Immune Pathway Activated in the C. elegans Intestine Is Neuroprotective.
Immunological mediators that originate outside the nervous system can affect neuronal health. However, their roles in neurodegeneration remain largely unknown. Here, we show that the p38MAPK-mediated immune pathway activated in intestinal cells of Caenorhabditis elegans upon mitochondrial dysfunction protects neurons in a cell-non-autonomous fashion. Specifically, mitochondrial complex I dysfun...
متن کاملEffects of mitochondrial dynamics genes, fzo-1 and drp-1, on dopaminergic neurodegeneration induced by environmental exposure in Caenorhabditis elegans, as a model of Parkinson’s disease
Parkinson’s disease (PD) is caused by degeneration of the dopaminergic neurons; environmental toxicants are hypothesized to play a role in PD etiology. Environmental toxicants can cause mitochondrial dysfunction through mitochondrial DNA (mtDNA) damage and production of reactive oxygen species. Serial ultraviolet C (UVC) radiation causes an accumulation of mtDNA damage and 6-hydroxydopamine (6-...
متن کامل